Advertisements
Advertisements
Question
If equation tan θ + tan 2θ + tan θ tan 2θ = 1, θ = ______.
Options
`("n"pi)/2 + pi/6`
`("n"pi)/2 + 6`
`("n"pi)/3 + pi/12`
`("n"pi)/2 + pi/12`
MCQ
Fill in the Blanks
Solution
If equation tan θ + tan 2θ + tan θ tan 2θ = 1, θ = `("n"pi)/2 + pi/6`.
Explanation:
tan θ + tan 2θ + tan θ . tan 2θ = 1
⇒ tan θ + tan 2θ = 1 – tan θ . tan 2θ
⇒ `(tan theta + tan 2theta)/(1 - tan theta * tan 2theta)` = 1
⇒ tan(θ + 2θ) = 1
⇒ tan(3θ) = 1 = tan `pi/4`
⇒ 3θ = `"n"pi + pi/4`
⇒ θ = `("n"pi)/3 + pi/12`
shaalaa.com
Trigonometric Functions of Sum and Difference of Angles
Is there an error in this question or solution?