Advertisements
Advertisements
Question
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
Options
`(a + b)/2 int_0^b f(b - x) dx`
`(a + b)/2 int_0^b f(b + x) dx`
`(b - a)/2 int_0^b f(x) dx`
`(a + b)/2 int_0^b f(x) dx`
MCQ
Solution
`(a + b)/2 int_0^b f(x) dx`
Explanation:
Let I = `int_0^b x f(x) dx`
= `int_0^b (a + b - x) f(a + b - x) dx` ......`[because int_0^b f(x) dx = int_a^b (a + b - x) dx]`
I = `int_a^b [(a + b) f(x) - xf(x)] dx`
= `(a + b) int_a^b f(x) dx - int_0^b xf(x) dx`
= `(a + b) int_a^b f(x) dx - I`
∴ 2I = `(a + b) int_a^b f(x) dx`
∴ I = `((a + b))/2 int_a^b f(x)`
shaalaa.com
Is there an error in this question or solution?