English

If f" = C, C ≠ 0, where C is a constant, then the value of limx→0f(x)-2f(2x)+3f(3x)x2 is -

Advertisements
Advertisements

Question

If f" = C, C ≠ 0, where C is a constant, then the value of `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2` is

Options

  • 0

  • 2C

  • 20C

  • 10C

MCQ

Solution

10C

Explanation:

Given `f^″(x) = C, C ≠ 0` and C is a constant then `lim_(x -> 0) (f(x) - 2f (2x) + 3f (3x))/x^2`

Using L.H. Rule

= `lim_(x -> 0) (f^'(x) - 2f^'(2x).2 + 3f^'(3x).3)/(2x)`

= `lim_(x -> 0) (f^('')(x) - 8f^('')(2x) + 27f^('')(3x))/2`

= `(C - 8C + 27C)/2 = 10C`.

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×