English

If f(x) = |1+sin2xcos2x4sin2xsin2x1+cos2x4sin2xsin2xcos2x1+4sin2x| What is the maximum value of f(x)? -

Advertisements
Advertisements

Question

If f(x) = `|(1 + sin^2x, cos^2x, 4 sin 2x),(sin^2x, 1 + cos^2x, 4 sin 2x),(sin^2 x, cos^2 x, 1 + 4 sin 2x)|` 

What is the maximum value of f(x)?

Options

  • 2

  • 4

  • 6

  • 8

MCQ

Solution

6

Explanation:

f(x) = `|(1 + sin^2x, cos^2x, 4 sin 2x),(sin^2x, 1 + cos^2x, 4 sin 2x),(sin^2 x, cos^2 x, 1 + 4 sin 2x)|` 

Applying `C_1 rightarrow C_1 + C_2`

= `|(2, cos^2 θ, 4 sin 2x),(2, 1 + cos^2 θ, 4 sin 2x),(1, cos^2 θ, 1 + 4 sin 2x)|`

`("Applying"  R_2 rightarrow R_2 - R_1 and R_3 rightarrow R_3 - R_1)`

= `|(2, cos^2 θ, 4 sin 2x),(0, 1, 0),(-1, 0, 1)|`

f(x) = 2 + 4 sin 2x

∴ – 1 ≤ sin 2x ≤ 1, maximwn value of sin 2x = 1

Thus, maximwn value of f(x) = 2 + 4 = 6

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×