Advertisements
Advertisements
Question
If f(x) = `|(1 + sin^2x, cos^2x, 4 sin 2x),(sin^2x, 1 + cos^2x, 4 sin 2x),(sin^2 x, cos^2 x, 1 + 4 sin 2x)|`
What is the maximum value of f(x)?
Options
2
4
6
8
MCQ
Solution
6
Explanation:
f(x) = `|(1 + sin^2x, cos^2x, 4 sin 2x),(sin^2x, 1 + cos^2x, 4 sin 2x),(sin^2 x, cos^2 x, 1 + 4 sin 2x)|`
Applying `C_1 rightarrow C_1 + C_2`
= `|(2, cos^2 θ, 4 sin 2x),(2, 1 + cos^2 θ, 4 sin 2x),(1, cos^2 θ, 1 + 4 sin 2x)|`
`("Applying" R_2 rightarrow R_2 - R_1 and R_3 rightarrow R_3 - R_1)`
= `|(2, cos^2 θ, 4 sin 2x),(0, 1, 0),(-1, 0, 1)|`
f(x) = 2 + 4 sin 2x
∴ – 1 ≤ sin 2x ≤ 1, maximwn value of sin 2x = 1
Thus, maximwn value of f(x) = 2 + 4 = 6
shaalaa.com
Is there an error in this question or solution?