Advertisements
Advertisements
Question
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
Options
296
297
298
299
Solution
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is 298. (Where δ is a rational number in its simplest form)
Explanation:
f(x) = `int(3x - 1)x^2(x + 1)(18x^5 + 15x^4 - 10x^3)^(1/6)dx`
= `int(3x^4 + 2x^3 - x^2)(18x^5 + 15x^4 - 10x^3)^(1/6)dx`
Let 18x5 + 15x4 – 10x3 = t
(90x4 + 60x3 – 30x2)dx = dt
30(3x4 + 2x3 – x2)dx = dt
f(x) = `int(dt)/30t^(1/6)`
= `t^(7/6)/30.7. 6 + c`
= `t^(7/6)/35 + c`
f(x) = `(18x^5 + 15x^4 - 10x^3)^(7/6)/35 + c`
α = 5, β = 4, γ = 3, δ = `7/6`, θ = 35
3α + 4β + 5γ + 6δ + 7θ
⇒ 15 + 16 + 15 + 7 + 245 = 298