Advertisements
Advertisements
Question
If f(x) = `{((3^x - e^x)/(tan2x); x ≠ 0),(1/2(log3 + 1); x = 0):}` then ______
Options
f(x) is continuous at x = 0
f{x) is discontinuous at x = 0
`lim_{x→0}`f(x) does not exist
none of these
MCQ
Fill in the Blanks
Solution
If f(x) = `{((3^x - e^x)/(tan2x); x ≠ 0),(1/2(log3 + 1); x = 0):}` then f{x) is discontinuous at x = 0.
Explanation:
`lim_{x→0}f(x) = lim_{x→0} (3^x - e^x)/(tan2x)`
= `lim_{x→0} (3^x - 1 + 1 - e^x)/(tan 2x)`
= `lim_{x→0} ((3^x - 1)/x - (e^x - 1)/x)/((tan2x)/(2x) xx 2)`
= `(log3 - loge)/2`
= `1/2(log3 - 1)`
∴ `lim_{x→0}f(x) ≠ f(0)`
∴ f(x) is discontinuous at x = 0.
shaalaa.com
Is there an error in this question or solution?