Advertisements
Advertisements
Question
If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is _______.
Options
- 66
30
- 30
66
MCQ
Fill in the Blanks
Solution
If f(x) = 3x3 - 9x2 - 27x + 15, then the maximum value of f(x) is 30.
Explanation:
We have,
f(x) = 3x3 - 9x2 - 27x + 15
⇒ f'(x) = 9x2 - 18x - 27
For maxima or minima, we put f'(x) = 0
⇒ 9x2 - 18x - 27 = 0
⇒ x2 - 2x - 3 = 0
⇒ (x - 3)(x + 1) = 0
⇒ x = -1, 3
Now, f''(x) = 18x - 18
at x = - 1, f'' (x) = 18(- 1) - 18 = - 36 < 0
So, x = - 1, point of maxima
∴ Maximum value of f(x) at x = - 1 is
f(- 1) = 3(-1)3 - 9(- 1)2 - 27(-1) + 15
= - 3 - 9 + 27 + 15
= - 12 + 42
= 30
shaalaa.com
Is there an error in this question or solution?