Advertisements
Advertisements
Question
If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).
Sum
Solution
f(x) = `sqrt(7*g(x) - 3)`
Differentiating w.r.t. x, we get
f'(x) = `d/dx [sqrt(7*g(x) - 3)]`
= `1/(2sqrt(7*g(x) - 3)) * d/dx [7*g(x) - 3]`
= `1/(2sqrt(7*g(x) - 3)) xx [7*g^'(x) - 0]`
∴ f'(x) = `(7*g^' (x))/(2sqrt(7*g(x) - 3))`
∴ f'(3) = `(7*g^' (3))/(2sqrt(7*g(3) - 3))` ...[∵ g(3) = 4 and g'(3) = 5]
= `(7(5))/(2sqrt(7(4) - 3))`
= `35/(2sqrt(25))`
= `35/10`
∴ f'(3) = `7/2`
shaalaa.com
Is there an error in this question or solution?