English

If f(x) = 7⋅g(x)-3, g(3) = 4 and g'(3) = 5, find f'(3). -

Advertisements
Advertisements

Question

If f(x) = `sqrt(7*g(x) - 3)`, g(3) = 4 and g'(3) = 5, find f'(3).

Sum

Solution

f(x) = `sqrt(7*g(x) - 3)`

Differentiating w.r.t. x, we get

f'(x) = `d/dx [sqrt(7*g(x) - 3)]`

= `1/(2sqrt(7*g(x) - 3)) * d/dx [7*g(x) - 3]`

= `1/(2sqrt(7*g(x) - 3)) xx [7*g^'(x) - 0]`

∴ f'(x) = `(7*g^' (x))/(2sqrt(7*g(x) - 3))`

∴ f'(3) = `(7*g^' (3))/(2sqrt(7*g(3) - 3))`  ...[∵ g(3) = 4 and g'(3) = 5]

= `(7(5))/(2sqrt(7(4) - 3))`

= `35/(2sqrt(25))`

= `35/10`

∴ f'(3) = `7/2`

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×