Advertisements
Advertisements
Question
If f(x) = `sin^2x + sin^2(x + pi/3) + cosx cos(x + pi/3) and g(5/4) = 1`, then (gof)(x) is equal to: ______
Options
`1/2`
0
sin x
1
– 1
2
– 2
MCQ
Fill in the Blanks
Solution
1
Explanation:
f(x) = `sin^2x + sin^2(x + pi/3) + cosx cos(x + pi/3)`
= `sin^2x + [sin(x + pi/3)]^2 + cosx[cosx cos pi/3 - sinx sin pi/3]`
= `sin^2x + [sinx cos pi/3 + cosx sin pi/3]^2 + cosx[1/2 cosx - sqrt3/2 sinx]`
= `sin^2x + [sinx/2 + sqrt3/2 cosx]^2 + cos^2x/2 - sqrt3/2 sinx cosx`
= `sin^2x + sin^2x/4 + 3/4 cos^2x + cos^2x/2 + sqrt3/2 sinx cosx - sqrt3/2 sinx cosx`
= `5/4(sin^2x + cos^2x) = 5/4`
(gof)(x) = g[f(x)] = `g(5/4) = 1`
shaalaa.com
Algebra of Functions
Is there an error in this question or solution?