Advertisements
Advertisements
Question
If f(x) = `|(cos^2x, cosx.sinx, -sinx),(cosx sinx, sin^2x, cosx),(sinx, -cosx, 0)|`, then for all x
Options
f(x) = 0
f(x) = 1
f(x) = 2
None of these
MCQ
Solution
f(x) = 1
Explanation:
We have `|(cos^2x, cosx.sinx, -sinx),(cosx sinx, sin^2x, cos x),(sin x, -cosx, 0)|`
= `|(1, 0, -sin x),(0, 1, cos x),(sin x, - cos x, 0)|` ......[Applying C1 → C1 – sin x . C3 and C2 → C2 + cos x . C3]
= `|(1, 0, - sin x),(0, 1, cos x),(0, - cos x, sin^2x)|` .....[Applying R3 → R3 – sin x . R1]
= sin2x + cos2x = 1 for all x. .......[Expanding along C1]
shaalaa.com
Determinants
Is there an error in this question or solution?