English

If f(x) = |cosx – sinx| , then f'f'(π4) = ______. - Mathematics

Advertisements
Advertisements

Question

If f(x) = |cosx – sinx| , then `"f'"(pi/4)` = ______.

Fill in the Blanks

Solution

If f(x) = |cosx – sinx| , then `"f'"(pi/4)` = `(sqrt(3) + 1)/2`.

Explanation:

Given that: f(x) = |cosx – sinx|

We know that sin x > cos x if x ∈ `(pi/4, pi/2)`

⇒ cos x – sin x < 0

∴ f(x) = – (cos x – sin x)

f'(x) = – (– sin x – cos x)

⇒ f'(x) = (sin x + cos x)

∴ `"f'"(pi/3) = sin  pi/3 + cos  pi/3`

= `sqrt(3)/2 + 1/2`

= `(sqrt(3) + 1)/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Exercise [Page 116]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Exercise | Q 100 | Page 116

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×