Advertisements
Advertisements
Question
If f(x) = `{{:((x - 4)/(|x - 4|) + a",", "for" x < 4),(a + b",", "for" x = 4 "is continuous at" x = 4","),((x - 4)/(|x - 4|) + b",", "for" x > 4):}`
then ______.
Options
a = 0, b = 0
a = 1, b = – 1
a = – 1, b = 1
a = 1, b = 1
Solution
If f(x) = `{{:((x - 4)/(|x - 4|) + a",", "for" x < 4),(a + b",", "for" x = 4 "is continuous at" x = 4","),((x - 4)/(|x - 4|) + b",", "for" x > 4):}`
then a = 1, b = – 1.
Explanation:
We have, f(x) = `{{:((x - 4)/(|x - 4|) + a",", "for" x < 4),(a + b",", "for" x = 4),((x - 4)/(|x - 4|) + b",", "for" x > 4):}`
∵ f(x) is continuous at x = 4
∴ `lim_(x rightarrow 4^+) f(x) = lim_(x rightarrow 4^-) f(x)` = f(4)
`lim_(x rightarrow 4^+) f(x) = lim_(x rightarrow 4^+) (x - 4)/(|x - 4|) + b` = b + 1 ...(i)
`lim_(x rightarrow 4^-) f(x) = lim_(x rightarrow 4^-) (x - 4)/(|x - 4|) + a` = a – 1 ...(ii)
f(4) = a + b ...(iii)
Equating equations (i) and (iii), we get a = 1
EquaJing equations (ii) and (iii), we get b = – 1