English

If ∫f(x)log(sinx)dx = log[log sin x] + c, then f(x) is equal to ______. -

Advertisements
Advertisements

Question

If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.

Options

  • cot x

  • tan x

  • sec x

  • cosec x

MCQ
Fill in the Blanks

Solution

If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to cot x.

Explanation:

Since, `int (f(x))/(log(sin x))dx` = log[log sin x] + c

After differentiating on both sides, we get

`(f(x))/(log(sin x)) = 1/(logsinx)  d/dx(log sin x) + 0`

`\implies (f(x))/(log(sin x)) = 1/(log sin x) xx 1/sinx xx cosx`

`\implies` f(x) = cot x

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×