English

If f(x) = π{logsin|x|cos2xlogsin|3x|cos x2|x|<π3;x≠0kx=0, then value of k for which f(x) is continuous at x = 0 is ______. -

Advertisements
Advertisements

Question

If f(x) = `{{:((log_(sin|x|) cos^2x)/(log_(sin|3x|) cos  x/2), |x| < π/3; x ≠ 0),(k, x = 0):}`, then value of k for which f(x) is continuous at x = 0 is ______.

Options

  • 7.00

  • 8.00

  • 9.00

  • 10.00

MCQ
Fill in the Blanks

Solution

If f(x) = `{{:((log_(sin|x|) cos^2x)/(log_(sin|3x|) cos  x/2), |x| < π/3; x ≠ 0),(k, x = 0):}`, then value of k for which f(x) is continuous at x = 0 is 8.00.

Explanation:

k = `lim_(x→0) (2logcosx)/(logsinx).(logsin3x)/(logcos  x/2)`

= `2lim_(x→0)(log(1 + cosx - 1))/(log(1 + cos  x/2 - 1)) (logsin3x)/(logsinx)`

= `2lim_(x→0)(-2sin^2  x/2)/(-2sin^2  x/4).(log(sinx(3 - 4sin^2x)))/(logsinx)`

= `2lim_(x→0) (x^2/4)/(x^3/16)(1 + (log(3 - 4sin^2x))/(logsinx))`

= 2.41

= 8

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×