Advertisements
Advertisements
Question
If f(x) = `{{:((log_(sin|x|) cos^2x)/(log_(sin|3x|) cos x/2), |x| < π/3; x ≠ 0),(k, x = 0):}`, then value of k for which f(x) is continuous at x = 0 is ______.
Options
7.00
8.00
9.00
10.00
MCQ
Fill in the Blanks
Solution
If f(x) = `{{:((log_(sin|x|) cos^2x)/(log_(sin|3x|) cos x/2), |x| < π/3; x ≠ 0),(k, x = 0):}`, then value of k for which f(x) is continuous at x = 0 is 8.00.
Explanation:
k = `lim_(x→0) (2logcosx)/(logsinx).(logsin3x)/(logcos x/2)`
= `2lim_(x→0)(log(1 + cosx - 1))/(log(1 + cos x/2 - 1)) (logsin3x)/(logsinx)`
= `2lim_(x→0)(-2sin^2 x/2)/(-2sin^2 x/4).(log(sinx(3 - 4sin^2x)))/(logsinx)`
= `2lim_(x→0) (x^2/4)/(x^3/16)(1 + (log(3 - 4sin^2x))/(logsinx))`
= 2.41
= 8
shaalaa.com
Is there an error in this question or solution?