Advertisements
Advertisements
Question
If f(x) = `{{:((sin(p + 1)x + sinx)/x,",", x < 0),(q,",", x = 0),((sqrt(x + x^2) - sqrt(x))/(x^(3//2)),",", x > 0):}`
is continuous at x = 0, then the ordered pair (p, q) is equal to ______.
Options
`(-3/2, -1/2)`
`(-1/2, 3/2)`
`(-3/2, 1/2)`
`(5/2, 1/2)`
Solution
If f(x) = `{{:((sin(p + 1)x + sinx)/x,",", x < 0),(q,",", x = 0),((sqrt(x + x^2) - sqrt(x))/(x^(3//2)),",", x > 0):}`
is continuous at x = 0, then the ordered pair (p, q) is equal to `underlinebb((-3/2, 1/2)`.
Explanation:
f(x) = `{{:((sin(p + 1)x + sinx)/x, x < 0),(q, x = 0 "is continuous at" x = 0),((sqrt(x^2 + x) - sqrt(x))/(x^(3/2)), x > 0) :}`
Therefore, f(0–) = f(0) = f(0)+ ...(i)
f(0–) = `lim_(h rightarrow 0)f(0 - h)`
= `lim_(h rightarrow 0) (sin(p + 1)(-h) + sin(-h))/(-h)`
= `lim_(h rightarrow 0) [(-sin(p + 1)h)/(-h) + (sinh)/h]`
= = `lim_(h rightarrow 0) (sin(p + 1)h)/(h(p + 1)) xx (p + 1) + lim_(h rightarrow 0) (sin h)/h`
= (p + 1) + 1
= p + 2 ...(ii)
And f(0+) = `lim_(h rightarrow 0) f(0 + h) = (sqrt(h^2 + h) - sqrt(h))/(h^(3//2))`
= `lim_(h rightarrow 0) ((h)^(1/2) [sqrt(h + 1) - 1])/(h(h^(1/2))`
= `lim_(h rightarrow 0) (sqrt(h + 1) - 1)/h xx (sqrt(h + 1) + 1)/(sqrt(h + 1) + 1)`
= `lim_(h rightarrow 0) (h + 1 - 1)/(h(sqrt(h + 1) + 1)`
= `lim_(h rightarrow 0) 1/(sqrt(h + 1) + 1)`
= `1/(1 + 1)`
= `1/2` ...(iii)
Now, from equation (1),
f(0–) = f(0) = f(0)+
`\implies` p + 2 = q = `1/2`
`\implies` q = `1/2` and p = `(-3)/2`
∴ (p, q) = `(-3/2, 1/2)`