English

If f(x) = sin2x1+cotx+cos2x1+tanx, then f'f'(π4) is ______. -

Advertisements
Advertisements

Question

If f(x) = `(sin^2x)/(1 + cotx) + (cos^2x)/(1 + tan x)`, then `"f'"(pi/4)` is ______.

Options

  • `sqrt(3)`

  • `1/sqrt(3)`

  • 0

  • `-sqrt(3)`

MCQ
Fill in the Blanks

Solution

If f(x) = `(sin^2x)/(1 + cotx) + (cos^2x)/(1 + tan x)`, then `"f'"(pi/4)` is 0.

Explanation:

f(x) = `(sin^2x)/(1 + cotx) + (cos^2x)/(1 + tan x)`

= `(sin^2x(sin x))/(sin x + cos x) + (cos^2x(cosx))/(cosx + sinx)`

=`(sin^3x + cos^3x)/(sinx + cosx)`

= `sin^2x - sinx cosx + cos^2x`  ......[∵ a3 + b3 = (a + b)(a2 – ab + b2)]

= `(sin^2x + cos^2x) - 1/2 (2 sin x cosx)`

= `1 - 1/2 sin 2x`

∴ f'(x) = – cos 2x

⇒ `"f'"(pi/4) = -cos(pi/2)` = 0

shaalaa.com
Geometrical Meaning of Derivative
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×