Advertisements
Advertisements
Question
If f(x) = `(sin^2x)/(1 + cotx) + (cos^2x)/(1 + tan x)`, then `"f'"(pi/4)` is ______.
Options
`sqrt(3)`
`1/sqrt(3)`
0
`-sqrt(3)`
MCQ
Fill in the Blanks
Solution
If f(x) = `(sin^2x)/(1 + cotx) + (cos^2x)/(1 + tan x)`, then `"f'"(pi/4)` is 0.
Explanation:
f(x) = `(sin^2x)/(1 + cotx) + (cos^2x)/(1 + tan x)`
= `(sin^2x(sin x))/(sin x + cos x) + (cos^2x(cosx))/(cosx + sinx)`
=`(sin^3x + cos^3x)/(sinx + cosx)`
= `sin^2x - sinx cosx + cos^2x` ......[∵ a3 + b3 = (a + b)(a2 – ab + b2)]
= `(sin^2x + cos^2x) - 1/2 (2 sin x cosx)`
= `1 - 1/2 sin 2x`
∴ f'(x) = – cos 2x
⇒ `"f'"(pi/4) = -cos(pi/2)` = 0
shaalaa.com
Geometrical Meaning of Derivative
Is there an error in this question or solution?