Advertisements
Advertisements
Question
If f(x) = `(x - 2)/(x + 2)`, then f(α x) = ______
Options
`(f(x) + alpha)/(1 + alphaf(x))`
`((alpha - 1)f(x) + alpha + 1)/((alpha + 1)f(x) + (alpha - 1))`
`((alpha + 1)f(x) + alpha - 1)/((alpha - 1)f(x) + (alpha + 1))`
`(f(alphax) - 1)/(f(ax) + 1)`
MCQ
Fill in the Blanks
Solution
If f(x) = `(x - 2)/(x + 2)`, then f(α x) = `underline(((alpha + 1)f(x) + alpha - 1)/((alpha - 1)f(x) + (alpha + 1)))`
Explanation:
f(x) = `(x - 2)/(x + 2) ⇒ (1 + f(x))/(1 - f(x)) = x/2`
⇒ `x = (2 + 2f(x))/(1 - f(x))`
∴ f(αx) = `(alphax - 2)/(alphax + 2) = ((alpha + 1)f(x) + alpha - 1)/((alpha - 1)f(x) + alpha + 1)`
shaalaa.com
Is there an error in this question or solution?