Advertisements
Advertisements
Question
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
Options
`(-oo, -1) ∪ (1, oo)`
`[2, oo)`
`(-oo, -1) ∪ [2, oo)`
`(-oo, 0] ∪ (2, oo)`
MCQ
Fill in the Blanks
Solution
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in `[2, oo)`.
Explanation:
f(x) = `x^(3/2) (3x - 10)`, x ≥ 0
∴ f'(x) = `3/2 x^(1/2) (3x - 10) + x^(3/2) (3)`
= `15/2 x^(1/2) (x - 2)`
For f(x) to be increasing,
f'(x) ≥ 0 ⇒ `15/2 x^(1/2) (x - 2) ≥ 0`
⇒ x ≥ 2
⇒ x ∈ `[2, oo)`
shaalaa.com
Is there an error in this question or solution?