Advertisements
Advertisements
Question
If function
f(x) = `x - |x|/x, x < 0`
= `x + |x|/x, x > 0`
= 1, x = 0, then
Options
`lim_(x->0^-)`f(x) does not exist
`lim_(x->0^+)`f(x) does not exist
f(x) is continuous at x = 0
`lim_(x->0^-) "f"(x) ne lim_(x->0^+) "f"(x)`
MCQ
Solution
f(x) is continuous at x = 0
Explanation:
Given function,
f(x) = `x - |x|/x, x < 0`
= `x + |x|/x, x > 0 = 1,` x = 0
Now, at x = 0
LHL =`lim_(x->0^-) "f"(x) = lim_(x->0^-) (x - |x|/x)`
`lim_(x->0)(x - ((- x))/x) = lim_(x->0^-) (x + 1) = 1`
RHL = `lim_(x->0^+) "f"(x) = lim_(x->0^+) + (x + |x|/x)`
`lim_(x->0) (x + 1) = 1` and f(0) = 1
`therefore lim_(x->0^-) "f"(x) = lim_(x->0^+) "f"(x)` = f(0) = 1
⇒ f(x) is continuous at x = 0
shaalaa.com
Trigonometric Equations and Their Solutions
Is there an error in this question or solution?