Advertisements
Advertisements
Question
If I = `int 1/(2p) sqrt((p - 1)/(p + 1))dp` = f(p) + c, then f(p) is equal to ______.
Options
`1/2 ℓn[p - sqrt(p^2 - 1)]`
`1/2 cos^-1 p + 1/2 sec^-1p`
`ℓn sqrt(p + sqrt(p^2 - 1)) - 1/2 sec^-1p`
none of the above
MCQ
Fill in the Blanks
Solution
If I = `int 1/(2p) sqrt((p - 1)/(p + 1)) dp` = f(p) + c, then f(p) is equal to `underlinebb(ℓn sqrt(p + sqrt(p^2 - 1)) - 1/2 sec^-1p)`.
Explanation:
I = `int 1/(2p) sqrt((p - 1)/(p + 1)) dp`
= `1/2int (p - 1)/(psqrt((p + 1)(p - 1)) dp`
= `1/2int (pdp)/(psqrt(p^2 - 1)) - 1/2 int (dp)/(psqrt(p^2 - 1))`
= `1/2int (dp)/sqrt(p^2 - 1) - 1/2int (dp)/(psqrt(p^2 - 1)`
= `1/2 log_e (p + sqrt(p^2 - 1)) - 1/2 sec^-1p`
`\implies` f(p) = `logsqrt(p + sqrt(p^2 - 1)) - 1/2 sec^-1p`
shaalaa.com
Indefinite Integration
Is there an error in this question or solution?