Advertisements
Advertisements
Question
If in a `triangle"ABC",` a2cos2 A - b2 - c2 = 0, then ______.
Options
`(A+B)/2`
`pi/2<A<pi`
`A=pi/2`
`A<(1/2ac sinB)/(1/2(a+b+c))`
MCQ
Fill in the Blanks
Solution
If in a `triangle"ABC",` a2cos2 A - b2 - c2 = 0, then `underline(pi/2<A<pi)`.
Explanation:
a2cos2 A - b2 - c2 = 0
`=>cos^2A=(b^2+c^2)/a^2`
Since cos2A ≤ 1 i.e., cos2A < 1
`therefore(b^2+c^2)/a^2< 1 =>b^2+c^2-a^2<0`
`(a+c-b)/(a+c-b)` ....[∵ 2bc > 0]
∴ cosA < 0 ⇒ A ∈ `(pi/2,pi)`
shaalaa.com
Is there an error in this question or solution?