Advertisements
Advertisements
Question
If in a triangle ABC, AB = 5 units, AB = 5 units, ∠B = `cos^-1 (3/5)` and radius of circumcircle of ΔABC is 5 units, then the area (in sq.units) of ΔABC is ______.
Options
`6 + 8sqrt(3)`
`8 + 2sqrt(2)`
`4 + 2sqrt(3)`
`10 + 6sqrt(2)`
Solution
If in a triangle ABC, AB = 5 units, AB = 5 units, ∠B = `cos^-1 (3/5)` and radius of circumcircle of ΔABC is 5 units, then the area (in sq.units) of ΔABC is `underlinebb(6 + 8sqrt(3))`.
Explanation:
Given that, ∠B = `cos^-1 (3/5)`, R = 5 units
∴ cosB = `3/5` ⇒ sinB = `4/5`
Now, `b/(sinB)` = 2R ⇒ b = 2RsinB
= `2(5)4/5`
∴ b = 8
Now, By cosine rule
cosB = `(a^2 + c^2 - b^2)/(2ac) = 3/5`
⇒ `(a^2 + 25 - 64)/(10a) = 3/5`
⇒ a2 – 39 = 6a
⇒ a2 – 6a – 39 = 0
⇒ a = `(6 +- 8sqrt(3))/2`
⇒ a = `(6 +- 8sqrt(3))/2 = 3 +- 4sqrt(3)`
⇒ a = `3 + 4sqrt(3)`, a = `3 - 4sqrt(3)`
a = `3 - 4sqrt(3) < 0`
∴ a = `3 - 4sqrt(3)` can not be possible (since length of side can not be negative
∴ a = `3 + sqrt(3)`
Now, area of ΔABC = `(abc)/(4R) = ((3 + 4sqrt(3))(8)(5))/(4(5))`
∴ Δ = `(6 + 8sqrt(3))`sq.units