Advertisements
Advertisements
Question
If in the binomial expansion of (1 + x)n where n is a natural number, the coefficients of the 5th, 6th and 7th terms are in A.P., then n is equal to:
Options
7 or 13
7 or 14
7 or 15
7 or 17
Solution
7 or 14
Explanation:
In the binomial expansion of (1 + x)n,
`{:(T_r = ""^nC_(r - 1)*(x)^(y - 1), "For" r = 5",", T_5 = ""^nC_4 x^4):}`
`{:(r = 6",", T_6 = ""nC_5 x^5";", "and" r = 7",", T_7 = ""^nC_6 x^6):}`
Since, the coefficients of these terms are in A.P.
⇒ T5 + T7 = 2T6
⇒ nC6 + nC6 = 2 × nC5
⇒ `(n!)/((n - 4)4!) + (n!)/((n - 6)!6!) = (2 xx n!)/((n - 5)!5!)`
⇒ `(n(n - 1)(n - 2)(n - 3))/4 + (n(n - 1)(n - 2)(n - 3)(n - 4)(n - 5))/6 = (2n(n - 1)(n - 2)(n - 3)(n - 4))/(5!)`
⇒ `1/(4!) + ((n - 4)(n - 5))/(6!) = (2(n - 4))/(5!)`
⇒ `1/1 + ((n - 4)(n - 5))/(5 xx 6) = (2(n - 4))/(5!)`
⇒ `(30 + n^2 - 9n + 20)/(5 xx 6) = (2n - 8)/5`
⇒ `n^2 - 9n + 50 = 6(2n - 8)`
⇒ `n^2 - 9n + 50 - 12n + 48` = 0
⇒ `n^2 - 21n + 98` = 0
⇒ `(n - 7)(n - 14)` = 0
⇒ n = 7 or n = 14.