English

If ω is a non-real cube root of unity and n is not a multiple of 3, then Δ=|1ωnω2nω2n1ωnωnω2n1| is equal to ____________. -

Advertisements
Advertisements

Question

If `omega` is a non-real cube root of unity and n is not a multiple of 3, then `Delta = abs ((1, omega^n, omega^(2n)),(omega^(2n), 1, omega^n),(omega^n, omega^(2n), 1))` is equal to ____________.

Options

  • 0

  • None of these

  • 1

  • -1

MCQ
Fill in the Blanks

Solution

If `omega` is a non-real cube root of unity and n is not a multiple of 3, then `Delta = abs ((1, omega^n, omega^(2n)),(omega^(2n), 1, omega^n),(omega^n, omega^(2n), 1))` is equal to 0.

Explanation:

`abs ((1, omega^n, omega^(2n)),(omega^(2n), 1, omega^n),(omega^n, omega^(2n), 1))`

Apply, `"R"_1 -> omega^n  "R"_1`

`1/omega^n abs ((omega^n, omega^(2n), omega^(3n)),(omega^(2n), 1, omega^n),(omega^n, omega^(2n), 1))` (multiply and divide by ωn ) and

`omega^(3n) = 1` and taking ωn common from C1

`omega^n/omega^n abs ((1, omega^(2n), 1),(omega^n, 1, omega^n),(1, omega^(2n), 1))`

Since C1 and C3 are identical
So value is equal to 0

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×