English

If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points θθ(3cosθ,3sinθ) and θθθπ(-3sinθ,3cosθ);θ∈(0,π2); then βθ2cotβsin2θ is equal to ______. -

Advertisements
Advertisements

Question

If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.

Options

  • `sqrt(2)`

  • `2/sqrt(3)`

  • `1/sqrt(3)`

  • `sqrt(3)/4`

MCQ
Fill in the Blanks

Solution

If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to `underlinebb(2/sqrt(3))`.

Explanation:

Since, x2 + 3y2 = 9

`\implies 2x + 6y (dy)/(dx)` = 0

`\implies (dy)/(dx) = (-x)/(3y)`

Slope of normal is `-(dx)/(dy) = (3y)/x`

`\implies (- (dx)/(dy))_((3 cos θ"," sqrt(3) sin θ)) = (3sqrt(3) sin θ)/(3 cos θ) = sqrt(3) tan θ` = m1

and `(- (dx)/(dy))_((-3 sin θ"," sqrt(3) cos θ)) = (3sqrt(3) cos θ)/(-3 sin θ) = -sqrt(3) cot θ` = m2

As, β is the angle between the normals to the given ellipse then

tan β = `|(m_1 - m_2)/(1 + m_1m_2)|`

= `|(sqrt(3) tan θ + sqrt(3) cot θ)/(1 - 3 tan θ cot θ)|`

= `|(sqrt(3) tan θ + sqrt(3) cot θ)/(1 - 3)|`

So, tan β = `sqrt(3)/2 |tan θ + cot θ|`

`\implies 1/cotβ = sqrt(3)/2 |sinθ/cosθ + cosθ/sinθ|`

`\implies 1/cotβ = sqrt(3)/2 |1/(sinθ cosθ)|`

`\implies 1/cotβ = sqrt(3)/(sin 2θ)`

`\implies (2 cot β)/(sin 2 θ)`

`\implies 2/sqrt(3)`

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×