Advertisements
Advertisements
Question
If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to ______.
Options
`sqrt(2)`
`2/sqrt(3)`
`1/sqrt(3)`
`sqrt(3)/4`
Solution
If β is one of the angles between the normals to the ellipse, x2 + 3y2 = 9 at the points `(3cosθ, sqrt(3) sinθ)` and `(-3sinθ, sqrt(3) cos θ); θ ∈(0, π/2)`; then `(2 cot β)/(sin 2θ)` is equal to `underlinebb(2/sqrt(3))`.
Explanation:
Since, x2 + 3y2 = 9
`\implies 2x + 6y (dy)/(dx)` = 0
`\implies (dy)/(dx) = (-x)/(3y)`
Slope of normal is `-(dx)/(dy) = (3y)/x`
`\implies (- (dx)/(dy))_((3 cos θ"," sqrt(3) sin θ)) = (3sqrt(3) sin θ)/(3 cos θ) = sqrt(3) tan θ` = m1
and `(- (dx)/(dy))_((-3 sin θ"," sqrt(3) cos θ)) = (3sqrt(3) cos θ)/(-3 sin θ) = -sqrt(3) cot θ` = m2
As, β is the angle between the normals to the given ellipse then
tan β = `|(m_1 - m_2)/(1 + m_1m_2)|`
= `|(sqrt(3) tan θ + sqrt(3) cot θ)/(1 - 3 tan θ cot θ)|`
= `|(sqrt(3) tan θ + sqrt(3) cot θ)/(1 - 3)|`
So, tan β = `sqrt(3)/2 |tan θ + cot θ|`
`\implies 1/cotβ = sqrt(3)/2 |sinθ/cosθ + cosθ/sinθ|`
`\implies 1/cotβ = sqrt(3)/2 |1/(sinθ cosθ)|`
`\implies 1/cotβ = sqrt(3)/(sin 2θ)`
`\implies (2 cot β)/(sin 2 θ)`
`\implies 2/sqrt(3)`