Advertisements
Advertisements
Question
If `lim_(x->1)(x^5-1)/(x-1)=lim_(x->k)(x^4-k^4)/(x^3-k^3),` then k = ______.
Options
`4/3`
`15/4`
`3/4`
`4/15`
MCQ
Fill in the Blanks
Solution
If `lim_(x->1)(x^5-1)/(x-1)=lim_(x->k)(x^4-k^4)/(x^3-k^3),` then k = `underline(15/4)`.
Explanation:
`lim_(x->1)(x^5-1)/(x-1)=lim_(x->1)(x^5-1^5)/(x-1)` = 5 `...[becauselim_(x->a)(x^m-a^m)/(x^n-a^n)=m/na^(m-n)]`
`lim_(x->k)(x^4-k^4)/(x^3-k^3)=4/3k^(4-3)=4/3k`
`therefore 5 = 4/3k =>k=15/4`
shaalaa.com
Concept of Limits
Is there an error in this question or solution?