Advertisements
Advertisements
Question
If line `(2x - 4)/lambda = ("y" - 1)/2 = ("z" - 3)/1` and `(x - 1)/1 = (3"y" - 1)/lambda = ("z" - 2)/1` are perpendicular to each other then λ = ______.
Options
7
`- 7/6`
6
`- 6/7`
Solution
If line `(2x - 4)/lambda = ("y" - 1)/2 = ("z" - 3)/1` and `(x - 1)/1 = (3"y" - 1)/lambda = ("z" - 2)/1` are perpendicular to each other then λ = `underline(- 6/7)`.
Explanation:
If lines `(x - x_1)/"a"_1 = ("y" - "y"_1)/"b"_1 = ("z" - "z"_1)/"c"_1 and (x - x_2)/"a"_2 = ("y" - "y"_2)/"b"_2 = ("z" - "z"_2)/"c"_2`
are perpendicular, then a1a2 + b1b2 + c1c2 = 0
Given lines are `(2x - 4)/lambda = ("y" - 1)/2 = ("z" - 3)/1`
`=> (x - 2)/(lambda/2) = ("y - 1")/2 = ("z" - 3)/1` ....(i)
and `(x - 1)/1 = (3"y" - 1)/lambda = ("z" - 2)/1`
`=> (x - 1)/1 = ("y" - 1/3)/(lambda/3) = ("z - 2")/1` ...(ii)
Since, lines (i) and (ii) are perpendicular.
`therefore lambda/2 xx 1 + 2 xx lambda/3 + 1 xx 1 = 0`
`=> lambda/2 + (2lambda)/3 + 1 = 0`
⇒ 3λ + 4λ + 6 = 0
⇒ 7λ = - 6
⇒ λ = `-6/7`