Advertisements
Advertisements
Question
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Options
f(x) = log (log x); g(x) = `1/logx`
f(x) = log x; g(x) = `1/logx`
f(x) = `1/logx`; g(x) = log (log x)
f(x) = `1/(xlogx)`; g(x) = `1/logx`
MCQ
Fill in the Blanks
Solution
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then `underlinebb(f(x) = log (log x); g(x) = 1/logx)`.
Explanation:
Given,
`int[log(logx) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C
LHS = \[\ce{\int \underset{II}{1} . log (\underset{I}{l}og x) dx + \int \frac{1}{(log x)^2} dx}\]
= `x log (log x) - int 1/logx dx + int 1/(log x)^2 dx`
= `x log (log x) - x/logx - int 1/(logx)^2 dx + int 1/(logx)^2 dx + C`
= `x[log(log x) - 1/logx] + C`
∴ f(x) = log (log x); g(x) = `1/logx`
shaalaa.com
Is there an error in this question or solution?