Advertisements
Advertisements
Question
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to ______.
Options
`- (99x)/(101y)`
`(99x)/(101y)`
`- (99y)/(101x)`
`(99y)/(101x)`
MCQ
Fill in the Blanks
Solution
If `log_10 ((x^2 - y^2)/(x^2 + y^2))` = 2, then `dy/dx` is equal to `underlinebb(- (99x)/(101y))`.
Explanation:
Since, `log_10((x^2 - y^2)/(x^2 + y^2))` = 2
`\implies ((x^2 - y^2)/(x^2 + y^2))` = 102
`\implies` x – y2 = 100(x2 + y2)
After differentiating on both sides, we get
`2x - 2y dy/dx = 100(2x + 2y dy/dx)`
`\implies x - y dy/dx = 100x + 100y dy/dx`
`\implies 101y dy/dx` = –99x
`\implies dy/dx = (-99x)/(101y)`
shaalaa.com
Is there an error in this question or solution?