Advertisements
Advertisements
Question
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = ______.
Options
`x/y`
`-y/x`
`-x/y`
`y/x`
Solution
If `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2 then `dy/dx` = `underlinebb(y/x)`.
Explanation:
Since, `log_10 ((x^3 - y^3)/(x^3 + y^3))` = 2
∴ log (x3 – y3) – log (x3 + y3) = 2
`\implies` log (x3 – y3) = 2 + log (x3 + y3)
Differentiating both sides w.r.t. x
`\implies 1/(x^3 - y^3)[3x^2 - 3y^2 dy/dx] = 1/(x^3 + y^3)[3x^2 + 3y^2 dy/dx]`
`\implies (3x^2)/(x^3 - y^3) - (3y^2)/(x^3 - y^3) dy/dx = (3x^2)/(x^3 + y^3) + (3y^2)/(x^3 + y^3) dy/dx`
`\implies (3x^2)/(x^3 - y^3) - (3x^2)/(x^3 + y^3) = [(3y^2)/(x^3 + y^3) + (3y^2)/(x^3 - y^3)] dy/dx`
`\implies 3x^2[1/(x^3 - y^3) - 1/(x^3 + y^3)] = 3y^2[1/(x^3 + y^3) + 1/(x^3 - y^3)]dy/dx`
`\implies 3x^2[(2y^3)/((x^3 - y^3)(x^3 + y^3))] = 3y^2[(2x^3)/((x^3 + y^3)(x^3 - y^3))]dy/dx`
`implies y/x = dy/dx`