Advertisements
Advertisements
Question
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Sum
Solution
We have,
`RHS = m^2 + n^2`
`= (acosθ + bsinθ)^2 + (asinθ – bcosθ)^2`
`= (a^2 cos2θ + b^2 sin2θ + 2ab cosθsinθ) + (a^2 sin2θ + b^2 cos2θ – 2ab sinθcosθ)`
`= a^2 (cos^2 θ + sin^2 θ) + b^2 (sin^2 θ + cos^2 θ)`
`= a^2 + b^2 = LHS.`
shaalaa.com
Is there an error in this question or solution?