Advertisements
Advertisements
Question
If m be the slope of a tangent to the curve e2y = 1 + 4x2, then ______.
Options
m < 1
|m| ≤ 1
|m| > 1
|m| ≥ 1
MCQ
Fill in the Blanks
Solution
If m be the slope of a tangent to the curve e2y = 1 + 4x2, then |m| ≤ 1.
Explanation:
e2y = 1 + 4x2
2y = loge(1 + 4x2)
y = `1/2log_e(1 + 4x^2)`
`(dy)/(dx) = 1/2 xx 1/(1 + 4x^2) xx 4 xx 2x = (4x)/(1 + 4x^2)`
`(dy)/(dx) = (4x)/(1 + 4x^2)` = m
⇒ 4mx2 – 4x + m = 0
for x ∈ R,
Discriminant ≥ 0
⇒ 16 – 16 m2 ≥ 0
⇒ |m| ≤ 1
shaalaa.com
Is there an error in this question or solution?