Advertisements
Advertisements
Question
If matrix A = `[(1, -1),(2, 3)]`, then A2 – 4A + 5I is where I is a unit matix.
Options
Null matrix
Skew symmetric matrix
Symmetric Matrix
None of these
MCQ
Solution
Null matrix
Explanation:
Given, A = `[(1, -1),(2, 3)]`
∴ A2 = A . A = `[(1, -1),(2, 3)][(1, -1),(2, 3)]`
= `[(1 xx 1 + (-1) xx 2, 1 xx (-1) + (-1) xx 3),(2 xx 1 + 3 xx 2, 2 xx (-1) + 3 xx 3)]`
= `[(1 - 2, -1 - 3),(2 + 6, -2+ 9)]`
= `[(-1, -4),(8, 7)]`
Now, A2 – 4A + 5I
= `[(-1, -4),(8, 7)] - 4[(1, -1),(2, 3)] + 5[(1, 0),(0, 1)]`
= `[(-1, -4),(8, 7)] - [(4, -4),(8, 12)] + [(5, 0),(0, 5)]`
= `[(-1 - 4 + 5, -4 + 4 + 0),(8 - 8 + 0, 7 - 12 + 5)]`
= `[(0, 0),(0, 0)]`
= 0
shaalaa.com
Is there an error in this question or solution?