Advertisements
Advertisements
Question
If matrix P = `[(0, -tan (θ//2)),(tanθ//2, 0)]`, then find (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`
Options
I + 2P
2I + P
I + P
None of these
MCQ
Solution
I + P
Explanation:
I – P = `[(1, 0),(0, 1)] - [(0, -tan(θ//2)),(tan(θ//2), 0)]`
= `[(1, tan(θ//2)),(-tan(θ//2), 1)]`
∴ (I – P) `[(cosθ, -sinθ),(sinθ, cosθ)]`
= `[(1, tan(θ//2)),(-tanθ//2, 1)].[(cosθ, -sinθ),(sinθ, cosθ)]`
= `[(cosθ + tan(θ//2)sinθ, -sinθ + tan(θ//2)cosθ),(-tan(θ//2) cosθ + sinθ, tan(θ//2)sinθ + cosθ)]`
= `[(1 - 2sin^2(θ//2), -2sin(θ//2)cos(θ//2)),(+2sin^2(θ//2), + tan(θ//2)(2cos^2 (θ//2) - 1)),(-tan(θ//2)(2cos^2θ//2 -1), tan(θ//2)(2sin(θ//2) cos(θ//2))),(+2sin(θ//2)cos(θ//2), +(1 - 2sin^2(θ//2)))]`
= `[(1, -tan(θ//2)),(tan θ//2, 1)]`
= I + P
shaalaa.com
Is there an error in this question or solution?