Advertisements
Advertisements
Question
If the mth term of an A.P. is 1/n and the nth term is 1/m, show that the sum of mn terms is (mn + 1)
Sum
Solution
Let a be the first term and d be the common difference of the given A.P. Then,
`a_m=1/n=>a+(m-1)d=1/n`
`a_n=1/n=>a+(n-1)d=1/n`
Subtracting equation (ii) from equation (i), we get
`(m-n)d=\frac{1}{n}-\frac{1}{m}`
`\Rightarrow (m-n)d=\frac{m-n}{mn}\Rightarrow d=\frac{1}{mn}`
Putting d = 1/mn in equation (i), we get
`a+(m-1)\frac{1}{mn}=\frac{1}{n}`
`\Rightarrow a+\frac{1}{n}-\frac{1}{mn}=\frac{1}{n}\Rightarrowa=\frac{1}{mn}`
Now,
`S_(mn)=(mn)/2{2a+(mn1)xxd}`
`S_(mn)=(mn)/2[2/(mn)+(mn-1)xx1/(mn)]`
`S_(mn)=1/2(mn+1)`
shaalaa.com
Is there an error in this question or solution?