Advertisements
Advertisements
Question
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
Options
0.00
1.00
2.00
3.00
MCQ
Fill in the Blanks
Solution
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is 3.00.
Explanation:
Let nx = t
"d"x = `1/"ndt"`
`lim_("n"→∞)(int_("n"/("n" + 1))^1 tan^-1 "tdt")/(int_("n"/("n" + 1))^1 sin^-1 "tdt")`
= `lim_("n"→∞)(-tan^-1("n"/("n" + 1))"d"("n"/("n" + 1)))/(-sin^-1("n"/("n" + 1))"d"("n"/("n" + 1))`
= `(tan^-1(1))/(sin^-1(1))`
= `(π/4)/(π/2)`
= `1/2`
Now, `"p"/"q" = 1/2`
⇒ p + q = 3
shaalaa.com
Is there an error in this question or solution?