Advertisements
Advertisements
Question
If P(A) = `1/4`, `"P"("B") = 2/5` and `"P"("A" ∪ "B") = 1/2` Find the value of the following probability: P(A ∩ B)
Solution
Here, P(A) = `1/4`, `"P"("B") = 2/5` and `"P"("A" ∪ "B") = 1/2`
P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
∴ P(A ∩ B) = P(A) + P(B) – P(A ∪ B)
= `1/4 + 2/5 - 1/2`
= `3/20`
APPEARS IN
RELATED QUESTIONS
Two dice are thrown together. What is the probability that sum of the numbers on two dice is 5 or number on the second die is greater than or equal to the number on the first die?
A card is drawn from a pack of 52 cards. What is the probability that card is either red or face card?
Two cards are drawn from a pack of 52 cards. What is the probability that, both the cards are of same colour?
A bag contains 50 tickets, numbered from 1 to 50. One ticket is drawn at random. What is the probability that, number on the ticket is a perfect square or divisible by 4?
A bag contains 50 tickets, numbered from 1 to 50. One ticket is drawn at random. What is the probability that, number on the ticket is a prime number or greater than 30?
Hundred students appeared for two examinations. 60 passed the first, 50 passed the second and 30 passed in both. Find the probability that student selected at random passed in at least one examination.
If P(A) = `1/4`, P(B) = `2/5` and P(A ∪ B) = `1/2` Find the value of the following probability: P(A ∩ B')
If P(A) = `1/4`, P(B) = `2/5` and P(A ∪ B) = `1/2` Find the value of the following probability: P(A' ∩ B)
If P(A) = `1/4`, P(B) = `2/5` and P(A ∪ B) = `1/2` Find the value of the following probability: P(A' ∩ B')
A computer software company is bidding for computer programs A and B. The probability that the company will get software A is `3/5`, the probability that the company will get software B is `1/3`, and the probability that the company will get both A and B is `1/8`. What is the probability that the company will get at least one software?
A card is drawn from a well shuffled pack of 52 cards. Find the probability of it being a heart or a queen.
Two-third of the students in a class are boys and rest are girls. It is known that the probability of girl getting first class is 0.25 and that of boy getting is 0.28. Find the probability that a student chosen at random will get first class.
Two cards are drawn from a pack of 52 cards. What is the probability that, both the cards are either black or queens?
Let A and B be independent events such that P(A) = p, P(B) = 2p. The largest value of p, for which P(exactly one of A, B occurs) = `5/9`, is ______.
Four fair dice are thrown simultaneously. If the probability that the highest number obtained is 4 is `(25a)/1296` then 'a' is equal to ______.