English

If P Be the Length of the Perpendicular from the Origin on the Line X/A + Y/B = 1, Then - Mathematics

Advertisements
Advertisements

Question

If p be the length of the perpendicular from the origin on the line x/a + y/b = 1, then

Options

  •  p2 = a2 + b

  • \[p^2 = \frac{1}{a^2} + \frac{1}{b^2}\]

  • \[\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}\]

  • none of these

MCQ

Solution

\[\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}\]

It is given that p is the length of the perpendicular from the origin on the line \[\frac{x}{a} + \frac{y}{b} = 1\]

\[\frac{1}{a}x + \frac{1}{b}y - 1 = 0\]

\[ \therefore p = \left| \frac{0 + 0 - 1}{\sqrt{\frac{1}{a^2} + \frac{1}{b^2}}} \right|\]

Squaring both sides, 

\[ \Rightarrow \frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}\]

shaalaa.com
Shifting of Origin
  Is there an error in this question or solution?
Chapter 23: The straight lines - Exercise 23.21 [Page 134]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 23 The straight lines
Exercise 23.21 | Q 18 | Page 134
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×