English

If p→,q→ and r→ are nonzero, noncoplanar vectors then [p→+q→-r→p→-q→q→-r→] = ______. -

Advertisements
Advertisements

Question

If `vecp, vecq` and `vecr` are nonzero, noncoplanar vectors then `[(vecp + vecq - vecr, vecp - vecq, vecq - vecr)]` = ______.

Options

  • `3[(vecp, vecq, vecr)]`

  • 0

  • `[(vecp, vecq, vecr)]`

  • `2[(vecp, vecq, vecr)]`

MCQ
Fill in the Blanks

Solution

If `vecp, vecq` and `vecr` are nonzero, noncoplanar vectors then `[(vecp + vecq - vecr, vecp - vecq, vecq - vecr)]` = `underlinebb([(vecp, vecq, vecr)])`.

Explanation:

`[(vecp + vecq - vecr, vecp - vecq, vecq - vecr)]`

= `(vecp + vecq - vecr).[(vecp - vecq) xx (vecq - vecr)]`

= `(vecp + vecq - vecr).[vecp xx vecq - vecp xx vecr - vecq xx vecq + vecq xx vecr]`

= `[vecp + vecq - vecr].[vecp xx vecq - vecp xx vecr + vecq xx vecr]`  ...`(∵ veca xx veca = 0)`

= `[(vecp, vecp, vecq)] - [(vecp, vecp, vecr)] + [(vecp, vecq, vecr)] + [(vecq, vecp, vecq)] - [(vecq, vecp, vecr)] + [(vecq, vecq, vecr)] - [(vecr, vecp, vecq)] + [(vecr, vecp, vecr)] - [(vecr, vecq, vecr)]`

= `0 - 0 + [(vecp, vecq, vecr)] - 0 - [(vecq , vecp, vecr)] + 0 - [(vecr, vecp, vecq)] + 0 - 0`  ...`[∵ [(veca, veca, vecb)] = 0]`

= `[(vecp, vecq, vecr)] + [(vecp, vecq, vecr)] - [(vecp, vecq, vecr)]`

∵ `[(veca, vecb, vecc)] = [(vecb, vecc, veca)] = -[(vecb, veca, vecc)]`

= `[(vecp, vecq, vecr)]`.

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×