Advertisements
Advertisements
Question
If `vec"PO" + vec"OQ" = vec"QO" + vec"OR"`, prove that the points P, Q, R are collinear
Solution
Let P, Q, R be the given points.
Let O be the origin.
Then the position vectors of P, Q, R are `vec"OP", vec"OQ"` and `vec"OR"`
Given `vec"PO" + "OQ" = vec"QO" + vec"OR"` .......(1)
From the figure
`vec"PO" + "OQ" = vec"PQ"` ........(2)
`vec"QO" + "OR" = vec"QR"` ........(3)
Using equation (1), (2) and (3)
`vec"PQ" = vec"QR"`
`vec"PQ"` and `vec"QR"` are parallel vectors and are in the same direction, Q is a common point.
∴ P, Q, R lie on a straight line.
Hence, P, Q, R are collinear.
APPEARS IN
RELATED QUESTIONS
Let `vec"a"` and `vec"b"` be the position vectors of the points A and B. Prove that the position vectors of the points which trisects the line segment AB are `(vec"a" + 2vec"b")/3` and `(vec"b" + 2vec"a")/3`
If D and E are the midpoints of the sides AB and AC of a triangle ABC, prove that `vec"BE" + vec"DC" = 3/2vec"BC"`
Prove that the line segments joining the midpoints of the adjacent sides of a quadrilateral form a parallelogram
If `vec"a"` and `vec"b"` represent a side and a diagonal of a parallelogram, find the other sides and the other diagonal
If D is the midpoint of the aide BC of a triangle ABC, prove that `vec"AB" + vec"AC" = 2vec"AD"`
If G is the centroid of a triangle ABC, prove that `vec"GA" + vec"GB" + vec"GC" = vec0`
If ABCD is a quadrilateral and E and F are the midpoints of AC and BD respectively, then Prove that `vec"AB" + vec"AD" + vec"CB" + vec"CD" = 4vec"EF"`
The position vectors of the vertices of a triangle are `hat"i" + 2hat"j" + 3hat"k", 3hat"i" - 4hat"j" + 5hat"k"` and `-2hat"i" + 3hat"j" - 7hat"k"`. Find the perimeter of the triangle
Show that the points A(1, 1, 1), B(1, 2, 3) and C(2, – 1, 1) are vertices of an isosceles triangle
Choose the correct alternative:
The value of `vec"AB" + vec"BC" + vec"DA" + vec"CD"` is
Choose the correct alternative:
If `vec"BA" = 3hat"i" + 2hat"j" + hat"k"` and the position vector of is `hat"i" + 3hat"j" - hat"k"`, then the position vector A is
Choose the correct alternative:
If `vec"r" = (9vec"a" + 7vec"b")/16`, then the point P whose position vector `vec"r"` divides the line joining the points with position vectors `vec"a"` and `vec"b"` in the ratio
Choose the correct alternative:
Two vertices of a triangle have position vectors `3hat"i" + 4hat"j" - 4hat"k"` and `2hat"i" + 3hat"j" + 4hat"k"`. If the position vector of the centroid is `hat"i" + 2hat"j" + 3hat"k"`, then the position vector of the third vertex is