Advertisements
Advertisements
Question
If the roots of the equation (a2 + b2)x2 − 2 (ac + bd)x + (c2 + d2) = 0 are equal, prove that `a/b=c/d`.
Solution
The given quadric equation is (a2 + b2)x2 − 2 (ac + bd)x + (c2 + d2) = 0, and roots are real
Then prove that `a/b=c/d`.
Here,
a = (a2 + b2), b = -2 (ac + bd) and c = (c2 + d2)
As we know that D = b2 - 4ac
Putting the value of a = (a2 + b2), b = -2 (ac + bd) and c = (c2 + d2)
D = b2 - 4ac
= {-2(ac + bd)}2 - 4 x (a2 + b2) x (c2 + d2)
= 4(a2c2 + 2abcd + b2 + d2) - 4(a2c2 + a2d2 + b2c2 + b2d2)
= 4a2c2 + 8abcd + 4b2d2 - 4a2c2 - 4a2d2 - 4b2c2 - 4b2d2
= -4a2d2 - 4b2c2 + 8abcd
= -4(a2d2 + b2c2 - 2abcd)
The given equation will have real roots, if D = 0
-4(a2d2 + b2c2 - 2abcd) = 0
a2d2 + b2c2 - 2abcd = 0
(ad)2 + (bc)2 - 2(ad)(bc) = 0
(ad - bc)2 = 0
Square root both sides we get,
ad - bc = 0
ad = bc
`a/b=c/d`
Hence `a/b=c/d`
APPEARS IN
RELATED QUESTIONS
Find the values of k for which the quadratic equation (k + 4) x2 + (k + 1) x + 1 = 0 has equal roots. Also find these roots.
The equation `3x^2 – 12x + (n – 5) = 0` has equal roots. Find the value of n.
If x = −2 is a root of the equation 3x2 + 7x + p = 1, find the values of p. Now find the value of k so that the roots of the equation x2 + k(4x + k − 1) + p = 0 are equal.
Find the value of k for which the roots of the equation 3x2 - 10x + k = 0 are reciprocal of each other.
Determine, if 3 is a root of the given equation
`sqrt(x^2 - 4x + 3) + sqrt(x^2 - 9) = sqrt(4x^2 - 14x + 16)`.
Determine whether the given quadratic equations have equal roots and if so, find the roots:
3x2 - 6x + 5 = 0
Find the discriminant of the following equations and hence find the nature of roots: 3x2 – 5x – 2 = 0
Compare the quadratic equation `x^2 + 9sqrt(3)x + 24 = 0` to ax2 + bx + c = 0 and find the value of discriminant and hence write the nature of the roots.
Let p be a prime number. The quadratic equation having its roots as factors of p is ______.
Assertion (A): If one root of the quadratic equation 4x2 – 10x + (k – 4) = 0 is reciprocal of the other, then value of k is 8.
Reason (R): Roots of the quadratic equation x2 – x + 1 = 0 are real.