English

If S1 and S2 are respectively the sets of local minimum and local maximum points of the function. f(x) = 9x4 + 12x3 – 36x2 + 25, x ∈ R, then ______. -

Advertisements
Advertisements

Question

If S1 and S2 are respectively the sets of local minimum and local maximum points of the function. f(x) = 9x4 + 12x3 – 36x2 + 25, x ∈ R, then ______.

Options

  • S1 = {–2, 1}; S2 = {0}

  • S1 = {–2, 0}; S2 = {1}

  • S1 = {–2}; S2 = {0, 1}

  • S1 = {–1}; S2 = {0, 2}

MCQ
Fill in the Blanks

Solution

If S1 and S2 are respectively the sets of local minimum and local maximum points of the function. f(x) = 9x4 + 12x3 – 36x2 + 25, x ∈ R, then `underlinebb(S_1 = {-2, 1}; S_2 = {0})`.

Explanation:

f(x) = 9x4 + 12x3 – 36x2 + 25

f'(x) = 36x3 + 36x2 - 72x

= 36x(x2 + x - 2)

= 36x(x + 2)(x - 2)

f'(x) = 0  for maximum and minimum

36x(x + 2)(x - 1) = 0

x = 0, 1, -2

f''(x) = 108x2 + 72x – 72

= 36(3x2 + 2x – 2)

 f''(0) = –2 then maximum

if f''(c) is  –ve then maximum

f'(1) = +ve  Minimum at  x = 1

f''(0) is +ve  then minimum

f''(-2) = +ve so Minimum

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×