Advertisements
Advertisements
Question
If sin A + sin B = C, cos A + cos B = D, then the value of sin(A + B) = ______.
Options
CD
`(CD)/(C^2 + D^2)`
`(C^2 + D^2)/(2CD)`
`(2CD)/(C^2 + D^2)`
MCQ
Fill in the Blanks
Solution
If sin A + sin B = C, cos A + cos B = D, then the value of sin(A + B) = `underlinebb((2CD)/(C^2 + D^2))`.
Explanation:
Given:
sin A + sin B = C
cos A + cos B = D
Dividing both sides:
`(sin A + sin B)/(cos A + cos B) = C/D`
Using sum-to-product identities:
`(2 sin (A + B)/2 cos (A - B)/2)/(2 cos (A + B)/2 cos (A - B)/2` = `C/D`
`tan (A + B)/2 = C/D`
`sin (A + B) = (2 C/D)/(1 + (C/D)^2)`
= `(2C/D)/(1 + C^2/D^2)`
sin (A + B) = `(2CD)/(C^2 + D^2)`
shaalaa.com
Factorization Formulae - Trigonometric Functions of Angles of a Triangle
Is there an error in this question or solution?