Advertisements
Advertisements
Question
If sin θ + cos θ = 1, then the general value of θ is ______.
Options
2nπ
`"n"π + (- 1)^"n" pi/4 - pi/4`
`2"n"pi + pi/2`
`("2n" - 1) + pi/4`
MCQ
Fill in the Blanks
Solution
If sin θ + cos θ = 1, then the general value of θ is `underline("n"π + (- 1)^"n" pi/4 - pi/4)`.
Explanation:
sin θ + cos θ = 1
Dividing both sides by `sqrt(1^2 + 1^2) = sqrt2`, we get
`1/sqrt2 sin theta + 1/sqrt2 cos theta = 1/sqrt2`
`=> sin theta cos pi/4 + cos theta sin pi/4 = 1/sqrt2`
`=> sin(theta + pi/4) = 1/sqrt2 = sin pi/4` ....[∴ sin (A + B) = sin A cos B + cos A sin B]
`=> theta + pi/4 = "n"pi + (- 1)^"n" pi/4`
`=> theta = "n"pi + (- 1)^"n" pi/4 - pi/4`
shaalaa.com
Trigonometric Equations and Their Solutions
Is there an error in this question or solution?