Advertisements
Advertisements
Question
If sin y = x sin(a + y), then `dy/dx` = ______
Options
`(sin^2(a + y))/(sin(a + y))`
`(sin^2(a + y))/(cos(a + 2y))`
`(sin^2(a + y))/sina`
`(sin^2(a + y))/cosa`
MCQ
Fill in the Blanks
Solution
If sin y = x sin(a + y), then `dy/dx` = `underline((sin^2(a + y))/sina)`
Explanation:
sin y = x sin(a + y)
⇒ x = `siny/(sin(a + y))`
Differentiating both sides w.r.t x, we get
I = `(sin(a + y).cosy dy/dx - siny.cos(a + y)dy/dx)/(sin^2(a + y))`
⇒ I = `(dy/dx.sin(a + y - y))/(sin^2(a + y))`
⇒ `dy/dx = (sin^2(a + y))/(sina)`
shaalaa.com
Geometrical Meaning of Derivative
Is there an error in this question or solution?