Advertisements
Advertisements
Question
If `int(sin2x)/(sin5x sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = ______
Options
sin 5x
sin 4x
sin 2x
sin 6x
MCQ
Fill in the Blanks
Solution
If `int(sin2x)/(sin5x sin3x)dx = 1/3log|sin 3x| - 1/5log|f(x)| + c`, then f(x) = sin 5x.
Explanation:
`int(sin2x)/(sin5x sin3x)dx`
= `int(sin(5x - 3x))/(sin5x sin3x)dx`
= `int(sin5x cos3x - cos5x sin3x)/(sin5x sin3x)dx`
= `int(cot3x - cot5x)`dx
= `1/3log|sin 3x| - 1/5log|sin 5x| + c`
shaalaa.com
Is there an error in this question or solution?