Advertisements
Advertisements
Question
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
Options
0
1
2
3
Solution
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is 3.
Explanation:
I = `int (sinx/cos^3x)/(1 + tan^3x)dx`
= `int (tanx.sec^2x)/((tanx + 1)(1 + tan^2x - tanx))dx`
Let tan x = t
`\implies` sec3x.dx = dt
= `int t/((t + 1)(t^2 - t + 1))dt`
Let `t/((t + 1)(t^2 - t + 1)) = A/(t + 1) + (B(2t - 1))/(t^2 - t + 1) + C/(t^2- t + 1)`
`\implies` A(t2 – t + 1) + B(2t – 1)(t + 1) + C(t + 1) = t
`\implies` t2(A + 2B) + t(–A + B + C) + A – B + C = t
∴ A + 2B = 0 ...(i)
–A + B + C = 1 ...(ii)
A – B + C = 0 ...(iii)
`\implies` C = `1/2`
`\implies` A – B = `-1/2` ...(iv)
Solving equations (i) and (iv), we get
B = `1/6`, A = `-1/3`
∴ I = `-1/3int(dt)/(1 + t) + 1/6int(2t - 1)/(t^2 - t + 1)dt + 1/2int (dt)/(t^2 - t + 1)`
= `-1/3log_e|(1 + tan x)| + 1/6 log_e|tan^2x - tan x + 1| + 1/2. 2/sqrt(3) tan^-1(((tan x - 1/2))/(sqrt(3)/2))`
= `-1/3log_e|(1 + tan x)| + 1/6log_e|tan^2x - tan x + 1| + 1/sqrt(3)tan^-1 ((2tanx - 1)/sqrt(3)) + C`
α = `-1/3`, β = `1/6`, γ = `1/sqrt(3)`
So, 18(α + β + γ2) = `18(-1/3 + 1/6 + 1/3)` = 3