English

If Sn denotes the sum of first n terms of an A.P., prove that S12 = 3(S8 − S4). - Mathematics

Advertisements
Advertisements

Question

If Sn denotes the sum of first n terms of an A.P., prove that S12 = 3(S8 − S4).

 
Sum

Solution

Let a be the first term and d be the common difference.
We know that, sum of first n terms = Sn = \[\frac{n}{2}\][2a + (n − 1)d]

Now,
S= \[\frac{4}{2}\][2a + (4 − 1)d]
     = 2(2a + 3d)
     = 4a + 6d              ....(1)
S= \[\frac{8}{2}\] [2a + (8 − 1)d]
     = 4(2a + 7d)
     = 8a + 28d            ....(2) 
S12 = \[\frac{12}{2}\] [2a + (12 − 1)d]
      = 6(2a + 11d)
      = 12a + 66d          ....(3)
On subtracting (1) from (2), we get
S8 − S8a + 28d − (4a + 6d)
            = 4a + 22d
Multiplying both sides by 3, we get

3(S8 − S4) = 3(4a + 22d)
                 = 12a + 66d
                 = S
12                 [From (3)]
Thus, S12 = 3(S8 − S4).

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Arithmetic Progression - Exercise 5.6 [Page 54]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 5 Arithmetic Progression
Exercise 5.6 | Q 57 | Page 54
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×