Advertisements
Advertisements
Question
If tan α = `1/7`, tan β = `1/3`, then cos 2α = ______.
Options
sin 2β
sin 4β
sin 3β
None of these
MCQ
Fill in the Blanks
Solution
If tan α = `1/7`, tan β = `1/3`, then cos 2α = sin 4β.
Explanation:
Given, tan α = `1/7`, tan β = `1/3`
Now, we have,
cos 2α = `(1 - tan^2 α)/(1 + tan^2 α)`
= `(1 - (1/7)^2)/(1 + (1/7)^2`
= `48/50`
= `24/25`
and cos 2β = `(1 - tan^2 β)/(1 + tan^2 β)`
= `(1 - (1/3)^2)/(1 + (1/3)^2`
= `8/10`
= `4/5`
sin 2β = `(2 tan β)/(1 + tan^2 β)`
= `(2 xx 1/3)/(1 + (1/3)^2`
= `6/10`
= `3/5`
∴ sin 4β = 2 sin 2β cos 2β
= `2 xx 3/5 xx 4/5`
= `24/25`
= cos 2α
shaalaa.com
Trigonometric Functions of Triple Angle
Is there an error in this question or solution?