Advertisements
Advertisements
Question
If tan A and tan B are the roots of x2 – ax + b = 0, then the value of sin2(A + B) is ______.
Options
`a^2/(a^2 + (1 - b)^2`
`a^2/(a^2 + b^2)`
`a^2/(a^2 + b)^2`
`b^2/(a^2 + (a - b)^2`
MCQ
Fill in the Blanks
Solution
If tan A and tan B are the roots of x2 – ax + b = 0, then the value of sin2(A + B) is `underlinebb(a^2/(a^2 + (1 - b)^2`.
Explanation:
tan A + tan B = a and tan A tan B = b
tan (A + B) = `(tan A + tan B)/(1 - tan A tan B) = a/(1 - b)`
Now, sin2 (A + B) = `1/2 [1 - cos 2(A + B)]`
= `1/2[1 - (1 - tan^2 (A + B))/(1 + tan^2(A + B))]`
= `[(tan^2(A + B))/(1 + tan^2 (A + B))]`
= `(a^2/(1 - b)^2)/([(a^2 + (1 - b)^2)/(1 - b)^2]`
= `a^2/(a^2 + (1 - b)^2`
shaalaa.com
Trigonometric Functions of Triple Angle
Is there an error in this question or solution?